Review



green fluorescent protein  (Proteintech)


Bioz Verified Symbol Proteintech is a verified supplier  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 96

    Structured Review

    Proteintech green fluorescent protein
    UBR5 promoted the degradation and polyubiquitination of Snail. (A) UBR5 promoted the proteasomal degradation of Snail. HEK293T cells were transfected with Snail-Flag, Snail 6SA-Flag, UBR5-Myc, GFP, or empty vector and treated with DMSO, chloroquine, MG132, or CT99021 as indicated. The expression of Snail and GFP was assessed by western blotting. (B) UBR5 degraded Snail protein in a concentration-dependent manner. HEK293T cells were transfected with Snail-Flag, GFP, or in combination with different concentrations of wild-type and truncated UBR5-Myc for 48 h. Cell lysates were immunoblotted with anti-Snail antibodies. (C) UBR5 promoted K48 polyubiquitinated chain generation of Snail protein. In cellular ubiquitination assays, UBR5-Myc were co-transfected with Snail-Flag plasmids or with HA-Ub-K63 and HA-Ub-K48 plasmids. Western blotting was performed on cell lysates immunoprecipitated with an anti-Flag antibody, followed by the detection of polyubiquitination levels using an anti-Ub antibody. (D) UBR5 accelerated the Snail protein turnover through the HECT domain. HEK293T cells were transfected with corresponding plasmids. Cells were treated with cycloheximide (CHX) and harvested at indicated time points for immunoblotting with anti-Snail or <t>anti-GFP</t> antibody. The graph shows the quantification of Snail protein levels (based on the band intensity from the gels) normalized to those of GFP over the time course. Snail protein expression at the 0 h time point of treatment with CHX was set as 100 %. Experiments were performed in triplicate, and a representative experiment is presented.
    Green Fluorescent Protein, supplied by Proteintech, used in various techniques. Bioz Stars score: 96/100, based on 1492 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/green fluorescent protein/product/Proteintech
    Average 96 stars, based on 1492 article reviews
    green fluorescent protein - by Bioz Stars, 2026-02
    96/100 stars

    Images

    1) Product Images from "UBR5 regulates the progression of colorectal cancer cells through Snail-induced epithelial–mesenchymal transition"

    Article Title: UBR5 regulates the progression of colorectal cancer cells through Snail-induced epithelial–mesenchymal transition

    Journal: Genes & Diseases

    doi: 10.1016/j.gendis.2025.101679

    UBR5 promoted the degradation and polyubiquitination of Snail. (A) UBR5 promoted the proteasomal degradation of Snail. HEK293T cells were transfected with Snail-Flag, Snail 6SA-Flag, UBR5-Myc, GFP, or empty vector and treated with DMSO, chloroquine, MG132, or CT99021 as indicated. The expression of Snail and GFP was assessed by western blotting. (B) UBR5 degraded Snail protein in a concentration-dependent manner. HEK293T cells were transfected with Snail-Flag, GFP, or in combination with different concentrations of wild-type and truncated UBR5-Myc for 48 h. Cell lysates were immunoblotted with anti-Snail antibodies. (C) UBR5 promoted K48 polyubiquitinated chain generation of Snail protein. In cellular ubiquitination assays, UBR5-Myc were co-transfected with Snail-Flag plasmids or with HA-Ub-K63 and HA-Ub-K48 plasmids. Western blotting was performed on cell lysates immunoprecipitated with an anti-Flag antibody, followed by the detection of polyubiquitination levels using an anti-Ub antibody. (D) UBR5 accelerated the Snail protein turnover through the HECT domain. HEK293T cells were transfected with corresponding plasmids. Cells were treated with cycloheximide (CHX) and harvested at indicated time points for immunoblotting with anti-Snail or anti-GFP antibody. The graph shows the quantification of Snail protein levels (based on the band intensity from the gels) normalized to those of GFP over the time course. Snail protein expression at the 0 h time point of treatment with CHX was set as 100 %. Experiments were performed in triplicate, and a representative experiment is presented.
    Figure Legend Snippet: UBR5 promoted the degradation and polyubiquitination of Snail. (A) UBR5 promoted the proteasomal degradation of Snail. HEK293T cells were transfected with Snail-Flag, Snail 6SA-Flag, UBR5-Myc, GFP, or empty vector and treated with DMSO, chloroquine, MG132, or CT99021 as indicated. The expression of Snail and GFP was assessed by western blotting. (B) UBR5 degraded Snail protein in a concentration-dependent manner. HEK293T cells were transfected with Snail-Flag, GFP, or in combination with different concentrations of wild-type and truncated UBR5-Myc for 48 h. Cell lysates were immunoblotted with anti-Snail antibodies. (C) UBR5 promoted K48 polyubiquitinated chain generation of Snail protein. In cellular ubiquitination assays, UBR5-Myc were co-transfected with Snail-Flag plasmids or with HA-Ub-K63 and HA-Ub-K48 plasmids. Western blotting was performed on cell lysates immunoprecipitated with an anti-Flag antibody, followed by the detection of polyubiquitination levels using an anti-Ub antibody. (D) UBR5 accelerated the Snail protein turnover through the HECT domain. HEK293T cells were transfected with corresponding plasmids. Cells were treated with cycloheximide (CHX) and harvested at indicated time points for immunoblotting with anti-Snail or anti-GFP antibody. The graph shows the quantification of Snail protein levels (based on the band intensity from the gels) normalized to those of GFP over the time course. Snail protein expression at the 0 h time point of treatment with CHX was set as 100 %. Experiments were performed in triplicate, and a representative experiment is presented.

    Techniques Used: Transfection, Plasmid Preparation, Expressing, Western Blot, Concentration Assay, Ubiquitin Proteomics, Immunoprecipitation

    UBR5 C2768S mutation abrogated the interaction with Snail. (A) His pull-down assays showed the abolished interactions between Snail and the UBR5 C2768S. A schematic representation of the UBR5 wild-type and C2768S mutation. (B) Co-immunoprecipitation assay showed that the interaction between the Snail and the UBR5 C2768S mutation was eliminated. HEK293T cells were transfected with UBR5-Myc, UBR5 C2768S-Myc, and Snail-Flag as indicated. Cell lysates were immunoprecipitated with either anti-Myc or anti-Flag antibodies and immunoblotted with anti-Snail and anti-UBR5 antibodies. (C) UBR5 C2768S abolished the UBR5-mediated degradation of Snail. HEK293T cells were transfected with Snail-Flag, UBR5-Myc, and UBR5 C2768S-Myc as indicated. Cell lysates were subjected to western blotting analysis with anti-Snail and anti-GFP antibodies. (D) UBR5 C2768S did not accelerate Snail protein turnover. HEK293T cells were transfected with Snail-Flag, UBR5-Myc, and UBR5 C2768S-Myc and treated with cycloheximide (CHX) as indicated. Cell lysates were subjected to western blotting analysis with anti-Snail and anti-GFP antibodi.
    Figure Legend Snippet: UBR5 C2768S mutation abrogated the interaction with Snail. (A) His pull-down assays showed the abolished interactions between Snail and the UBR5 C2768S. A schematic representation of the UBR5 wild-type and C2768S mutation. (B) Co-immunoprecipitation assay showed that the interaction between the Snail and the UBR5 C2768S mutation was eliminated. HEK293T cells were transfected with UBR5-Myc, UBR5 C2768S-Myc, and Snail-Flag as indicated. Cell lysates were immunoprecipitated with either anti-Myc or anti-Flag antibodies and immunoblotted with anti-Snail and anti-UBR5 antibodies. (C) UBR5 C2768S abolished the UBR5-mediated degradation of Snail. HEK293T cells were transfected with Snail-Flag, UBR5-Myc, and UBR5 C2768S-Myc as indicated. Cell lysates were subjected to western blotting analysis with anti-Snail and anti-GFP antibodies. (D) UBR5 C2768S did not accelerate Snail protein turnover. HEK293T cells were transfected with Snail-Flag, UBR5-Myc, and UBR5 C2768S-Myc and treated with cycloheximide (CHX) as indicated. Cell lysates were subjected to western blotting analysis with anti-Snail and anti-GFP antibodi.

    Techniques Used: Mutagenesis, Co-Immunoprecipitation Assay, Transfection, Immunoprecipitation, Western Blot



    Similar Products

    94
    Developmental Studies Hybridoma Bank gfp
    Gfp, supplied by Developmental Studies Hybridoma Bank, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/gfp/product/Developmental Studies Hybridoma Bank
    Average 94 stars, based on 1 article reviews
    gfp - by Bioz Stars, 2026-02
    94/100 stars
      Buy from Supplier

    94
    Sino Biological green fluorescent protein
    Loading capacity and specificity of His-tagged green <t>fluorescent</t> protein (GFP) in Zn 2+ :EAKH6 coacervates and controls. (A) Pulldown assay based on the centrifugation of GFP and metal fibrils. Fluorescence measured in fibril composites of Zn 2+ or Ca 2+ at metal-to-peptide molar ratios of (B) 10:1 and (C) 1:1, and controls, including (D) EAK, (E) with EDTA, and (F) with excess imidazole (240 mM). Unpaired t -test: **** p < 0.0001, *** p < 0.0001, ** p < 0.001, and * p < 0.01. Schematic (A) was created in BioRender via an academic license.
    Green Fluorescent Protein, supplied by Sino Biological, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/green fluorescent protein/product/Sino Biological
    Average 94 stars, based on 1 article reviews
    green fluorescent protein - by Bioz Stars, 2026-02
    94/100 stars
      Buy from Supplier

    96
    Proteintech green fluorescent protein
    UBR5 promoted the degradation and polyubiquitination of Snail. (A) UBR5 promoted the proteasomal degradation of Snail. HEK293T cells were transfected with Snail-Flag, Snail 6SA-Flag, UBR5-Myc, GFP, or empty vector and treated with DMSO, chloroquine, MG132, or CT99021 as indicated. The expression of Snail and GFP was assessed by western blotting. (B) UBR5 degraded Snail protein in a concentration-dependent manner. HEK293T cells were transfected with Snail-Flag, GFP, or in combination with different concentrations of wild-type and truncated UBR5-Myc for 48 h. Cell lysates were immunoblotted with anti-Snail antibodies. (C) UBR5 promoted K48 polyubiquitinated chain generation of Snail protein. In cellular ubiquitination assays, UBR5-Myc were co-transfected with Snail-Flag plasmids or with HA-Ub-K63 and HA-Ub-K48 plasmids. Western blotting was performed on cell lysates immunoprecipitated with an anti-Flag antibody, followed by the detection of polyubiquitination levels using an anti-Ub antibody. (D) UBR5 accelerated the Snail protein turnover through the HECT domain. HEK293T cells were transfected with corresponding plasmids. Cells were treated with cycloheximide (CHX) and harvested at indicated time points for immunoblotting with anti-Snail or <t>anti-GFP</t> antibody. The graph shows the quantification of Snail protein levels (based on the band intensity from the gels) normalized to those of GFP over the time course. Snail protein expression at the 0 h time point of treatment with CHX was set as 100 %. Experiments were performed in triplicate, and a representative experiment is presented.
    Green Fluorescent Protein, supplied by Proteintech, used in various techniques. Bioz Stars score: 96/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/green fluorescent protein/product/Proteintech
    Average 96 stars, based on 1 article reviews
    green fluorescent protein - by Bioz Stars, 2026-02
    96/100 stars
      Buy from Supplier

    94
    Developmental Studies Hybridoma Bank gfp g1
    UBR5 promoted the degradation and polyubiquitination of Snail. (A) UBR5 promoted the proteasomal degradation of Snail. HEK293T cells were transfected with Snail-Flag, Snail 6SA-Flag, UBR5-Myc, GFP, or empty vector and treated with DMSO, chloroquine, MG132, or CT99021 as indicated. The expression of Snail and GFP was assessed by western blotting. (B) UBR5 degraded Snail protein in a concentration-dependent manner. HEK293T cells were transfected with Snail-Flag, GFP, or in combination with different concentrations of wild-type and truncated UBR5-Myc for 48 h. Cell lysates were immunoblotted with anti-Snail antibodies. (C) UBR5 promoted K48 polyubiquitinated chain generation of Snail protein. In cellular ubiquitination assays, UBR5-Myc were co-transfected with Snail-Flag plasmids or with HA-Ub-K63 and HA-Ub-K48 plasmids. Western blotting was performed on cell lysates immunoprecipitated with an anti-Flag antibody, followed by the detection of polyubiquitination levels using an anti-Ub antibody. (D) UBR5 accelerated the Snail protein turnover through the HECT domain. HEK293T cells were transfected with corresponding plasmids. Cells were treated with cycloheximide (CHX) and harvested at indicated time points for immunoblotting with anti-Snail or <t>anti-GFP</t> antibody. The graph shows the quantification of Snail protein levels (based on the band intensity from the gels) normalized to those of GFP over the time course. Snail protein expression at the 0 h time point of treatment with CHX was set as 100 %. Experiments were performed in triplicate, and a representative experiment is presented.
    Gfp G1, supplied by Developmental Studies Hybridoma Bank, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/gfp g1/product/Developmental Studies Hybridoma Bank
    Average 94 stars, based on 1 article reviews
    gfp g1 - by Bioz Stars, 2026-02
    94/100 stars
      Buy from Supplier

    97
    TaKaRa anti green fluorescent protein gfp monoclonal antibody
    UBR5 promoted the degradation and polyubiquitination of Snail. (A) UBR5 promoted the proteasomal degradation of Snail. HEK293T cells were transfected with Snail-Flag, Snail 6SA-Flag, UBR5-Myc, GFP, or empty vector and treated with DMSO, chloroquine, MG132, or CT99021 as indicated. The expression of Snail and GFP was assessed by western blotting. (B) UBR5 degraded Snail protein in a concentration-dependent manner. HEK293T cells were transfected with Snail-Flag, GFP, or in combination with different concentrations of wild-type and truncated UBR5-Myc for 48 h. Cell lysates were immunoblotted with anti-Snail antibodies. (C) UBR5 promoted K48 polyubiquitinated chain generation of Snail protein. In cellular ubiquitination assays, UBR5-Myc were co-transfected with Snail-Flag plasmids or with HA-Ub-K63 and HA-Ub-K48 plasmids. Western blotting was performed on cell lysates immunoprecipitated with an anti-Flag antibody, followed by the detection of polyubiquitination levels using an anti-Ub antibody. (D) UBR5 accelerated the Snail protein turnover through the HECT domain. HEK293T cells were transfected with corresponding plasmids. Cells were treated with cycloheximide (CHX) and harvested at indicated time points for immunoblotting with anti-Snail or <t>anti-GFP</t> antibody. The graph shows the quantification of Snail protein levels (based on the band intensity from the gels) normalized to those of GFP over the time course. Snail protein expression at the 0 h time point of treatment with CHX was set as 100 %. Experiments were performed in triplicate, and a representative experiment is presented.
    Anti Green Fluorescent Protein Gfp Monoclonal Antibody, supplied by TaKaRa, used in various techniques. Bioz Stars score: 97/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/anti green fluorescent protein gfp monoclonal antibody/product/TaKaRa
    Average 97 stars, based on 1 article reviews
    anti green fluorescent protein gfp monoclonal antibody - by Bioz Stars, 2026-02
    97/100 stars
      Buy from Supplier

    96
    Proteintech primary antibody against green fluorescent protein gfp
    UBR5 promoted the degradation and polyubiquitination of Snail. (A) UBR5 promoted the proteasomal degradation of Snail. HEK293T cells were transfected with Snail-Flag, Snail 6SA-Flag, UBR5-Myc, GFP, or empty vector and treated with DMSO, chloroquine, MG132, or CT99021 as indicated. The expression of Snail and GFP was assessed by western blotting. (B) UBR5 degraded Snail protein in a concentration-dependent manner. HEK293T cells were transfected with Snail-Flag, GFP, or in combination with different concentrations of wild-type and truncated UBR5-Myc for 48 h. Cell lysates were immunoblotted with anti-Snail antibodies. (C) UBR5 promoted K48 polyubiquitinated chain generation of Snail protein. In cellular ubiquitination assays, UBR5-Myc were co-transfected with Snail-Flag plasmids or with HA-Ub-K63 and HA-Ub-K48 plasmids. Western blotting was performed on cell lysates immunoprecipitated with an anti-Flag antibody, followed by the detection of polyubiquitination levels using an anti-Ub antibody. (D) UBR5 accelerated the Snail protein turnover through the HECT domain. HEK293T cells were transfected with corresponding plasmids. Cells were treated with cycloheximide (CHX) and harvested at indicated time points for immunoblotting with anti-Snail or <t>anti-GFP</t> antibody. The graph shows the quantification of Snail protein levels (based on the band intensity from the gels) normalized to those of GFP over the time course. Snail protein expression at the 0 h time point of treatment with CHX was set as 100 %. Experiments were performed in triplicate, and a representative experiment is presented.
    Primary Antibody Against Green Fluorescent Protein Gfp, supplied by Proteintech, used in various techniques. Bioz Stars score: 96/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/primary antibody against green fluorescent protein gfp/product/Proteintech
    Average 96 stars, based on 1 article reviews
    primary antibody against green fluorescent protein gfp - by Bioz Stars, 2026-02
    96/100 stars
      Buy from Supplier

    95
    Bio-Rad sheep anti gfp
    UBR5 promoted the degradation and polyubiquitination of Snail. (A) UBR5 promoted the proteasomal degradation of Snail. HEK293T cells were transfected with Snail-Flag, Snail 6SA-Flag, UBR5-Myc, GFP, or empty vector and treated with DMSO, chloroquine, MG132, or CT99021 as indicated. The expression of Snail and GFP was assessed by western blotting. (B) UBR5 degraded Snail protein in a concentration-dependent manner. HEK293T cells were transfected with Snail-Flag, GFP, or in combination with different concentrations of wild-type and truncated UBR5-Myc for 48 h. Cell lysates were immunoblotted with anti-Snail antibodies. (C) UBR5 promoted K48 polyubiquitinated chain generation of Snail protein. In cellular ubiquitination assays, UBR5-Myc were co-transfected with Snail-Flag plasmids or with HA-Ub-K63 and HA-Ub-K48 plasmids. Western blotting was performed on cell lysates immunoprecipitated with an anti-Flag antibody, followed by the detection of polyubiquitination levels using an anti-Ub antibody. (D) UBR5 accelerated the Snail protein turnover through the HECT domain. HEK293T cells were transfected with corresponding plasmids. Cells were treated with cycloheximide (CHX) and harvested at indicated time points for immunoblotting with anti-Snail or <t>anti-GFP</t> antibody. The graph shows the quantification of Snail protein levels (based on the band intensity from the gels) normalized to those of GFP over the time course. Snail protein expression at the 0 h time point of treatment with CHX was set as 100 %. Experiments were performed in triplicate, and a representative experiment is presented.
    Sheep Anti Gfp, supplied by Bio-Rad, used in various techniques. Bioz Stars score: 95/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/sheep anti gfp/product/Bio-Rad
    Average 95 stars, based on 1 article reviews
    sheep anti gfp - by Bioz Stars, 2026-02
    95/100 stars
      Buy from Supplier

    95
    Developmental Studies Hybridoma Bank mouse anti green fluorescent protein gfp
    UBR5 promoted the degradation and polyubiquitination of Snail. (A) UBR5 promoted the proteasomal degradation of Snail. HEK293T cells were transfected with Snail-Flag, Snail 6SA-Flag, UBR5-Myc, GFP, or empty vector and treated with DMSO, chloroquine, MG132, or CT99021 as indicated. The expression of Snail and GFP was assessed by western blotting. (B) UBR5 degraded Snail protein in a concentration-dependent manner. HEK293T cells were transfected with Snail-Flag, GFP, or in combination with different concentrations of wild-type and truncated UBR5-Myc for 48 h. Cell lysates were immunoblotted with anti-Snail antibodies. (C) UBR5 promoted K48 polyubiquitinated chain generation of Snail protein. In cellular ubiquitination assays, UBR5-Myc were co-transfected with Snail-Flag plasmids or with HA-Ub-K63 and HA-Ub-K48 plasmids. Western blotting was performed on cell lysates immunoprecipitated with an anti-Flag antibody, followed by the detection of polyubiquitination levels using an anti-Ub antibody. (D) UBR5 accelerated the Snail protein turnover through the HECT domain. HEK293T cells were transfected with corresponding plasmids. Cells were treated with cycloheximide (CHX) and harvested at indicated time points for immunoblotting with anti-Snail or <t>anti-GFP</t> antibody. The graph shows the quantification of Snail protein levels (based on the band intensity from the gels) normalized to those of GFP over the time course. Snail protein expression at the 0 h time point of treatment with CHX was set as 100 %. Experiments were performed in triplicate, and a representative experiment is presented.
    Mouse Anti Green Fluorescent Protein Gfp, supplied by Developmental Studies Hybridoma Bank, used in various techniques. Bioz Stars score: 95/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/mouse anti green fluorescent protein gfp/product/Developmental Studies Hybridoma Bank
    Average 95 stars, based on 1 article reviews
    mouse anti green fluorescent protein gfp - by Bioz Stars, 2026-02
    95/100 stars
      Buy from Supplier

    Image Search Results


    Loading capacity and specificity of His-tagged green fluorescent protein (GFP) in Zn 2+ :EAKH6 coacervates and controls. (A) Pulldown assay based on the centrifugation of GFP and metal fibrils. Fluorescence measured in fibril composites of Zn 2+ or Ca 2+ at metal-to-peptide molar ratios of (B) 10:1 and (C) 1:1, and controls, including (D) EAK, (E) with EDTA, and (F) with excess imidazole (240 mM). Unpaired t -test: **** p < 0.0001, *** p < 0.0001, ** p < 0.001, and * p < 0.01. Schematic (A) was created in BioRender via an academic license.

    Journal: ACS Applied Bio Materials

    Article Title: Zinc-Mediated Loading and Release of His-Tagged Recombinant Proteins in Self-Assembling Peptide Coacervates

    doi: 10.1021/acsabm.5c02044

    Figure Lengend Snippet: Loading capacity and specificity of His-tagged green fluorescent protein (GFP) in Zn 2+ :EAKH6 coacervates and controls. (A) Pulldown assay based on the centrifugation of GFP and metal fibrils. Fluorescence measured in fibril composites of Zn 2+ or Ca 2+ at metal-to-peptide molar ratios of (B) 10:1 and (C) 1:1, and controls, including (D) EAK, (E) with EDTA, and (F) with excess imidazole (240 mM). Unpaired t -test: **** p < 0.0001, *** p < 0.0001, ** p < 0.001, and * p < 0.01. Schematic (A) was created in BioRender via an academic license.

    Article Snippet: Green Fluorescent Protein coexpressed with a hexahistidine tag (His-tag) (HisGFP) was purchased from Sino Biological.

    Techniques: Centrifugation, Fluorescence

    In vivo retention of pG-His injected subcutaneously into the mouse footpad. (A) Fluorescent images of the footpad from 0 to 120 h obtained at 700 nm, with a resolution of 170 μm. (B, C) Quantification of fluorescent intensities in mice injected with dye-conjugated pG-His formulated in (B) saline or (C) Zn 2+ :EAKH6. (D) Retention of pG-His ( n = 3). Unpaired t -test with * p < 0.01.

    Journal: ACS Applied Bio Materials

    Article Title: Zinc-Mediated Loading and Release of His-Tagged Recombinant Proteins in Self-Assembling Peptide Coacervates

    doi: 10.1021/acsabm.5c02044

    Figure Lengend Snippet: In vivo retention of pG-His injected subcutaneously into the mouse footpad. (A) Fluorescent images of the footpad from 0 to 120 h obtained at 700 nm, with a resolution of 170 μm. (B, C) Quantification of fluorescent intensities in mice injected with dye-conjugated pG-His formulated in (B) saline or (C) Zn 2+ :EAKH6. (D) Retention of pG-His ( n = 3). Unpaired t -test with * p < 0.01.

    Article Snippet: Green Fluorescent Protein coexpressed with a hexahistidine tag (His-tag) (HisGFP) was purchased from Sino Biological.

    Techniques: In Vivo, Injection, Saline

    UBR5 promoted the degradation and polyubiquitination of Snail. (A) UBR5 promoted the proteasomal degradation of Snail. HEK293T cells were transfected with Snail-Flag, Snail 6SA-Flag, UBR5-Myc, GFP, or empty vector and treated with DMSO, chloroquine, MG132, or CT99021 as indicated. The expression of Snail and GFP was assessed by western blotting. (B) UBR5 degraded Snail protein in a concentration-dependent manner. HEK293T cells were transfected with Snail-Flag, GFP, or in combination with different concentrations of wild-type and truncated UBR5-Myc for 48 h. Cell lysates were immunoblotted with anti-Snail antibodies. (C) UBR5 promoted K48 polyubiquitinated chain generation of Snail protein. In cellular ubiquitination assays, UBR5-Myc were co-transfected with Snail-Flag plasmids or with HA-Ub-K63 and HA-Ub-K48 plasmids. Western blotting was performed on cell lysates immunoprecipitated with an anti-Flag antibody, followed by the detection of polyubiquitination levels using an anti-Ub antibody. (D) UBR5 accelerated the Snail protein turnover through the HECT domain. HEK293T cells were transfected with corresponding plasmids. Cells were treated with cycloheximide (CHX) and harvested at indicated time points for immunoblotting with anti-Snail or anti-GFP antibody. The graph shows the quantification of Snail protein levels (based on the band intensity from the gels) normalized to those of GFP over the time course. Snail protein expression at the 0 h time point of treatment with CHX was set as 100 %. Experiments were performed in triplicate, and a representative experiment is presented.

    Journal: Genes & Diseases

    Article Title: UBR5 regulates the progression of colorectal cancer cells through Snail-induced epithelial–mesenchymal transition

    doi: 10.1016/j.gendis.2025.101679

    Figure Lengend Snippet: UBR5 promoted the degradation and polyubiquitination of Snail. (A) UBR5 promoted the proteasomal degradation of Snail. HEK293T cells were transfected with Snail-Flag, Snail 6SA-Flag, UBR5-Myc, GFP, or empty vector and treated with DMSO, chloroquine, MG132, or CT99021 as indicated. The expression of Snail and GFP was assessed by western blotting. (B) UBR5 degraded Snail protein in a concentration-dependent manner. HEK293T cells were transfected with Snail-Flag, GFP, or in combination with different concentrations of wild-type and truncated UBR5-Myc for 48 h. Cell lysates were immunoblotted with anti-Snail antibodies. (C) UBR5 promoted K48 polyubiquitinated chain generation of Snail protein. In cellular ubiquitination assays, UBR5-Myc were co-transfected with Snail-Flag plasmids or with HA-Ub-K63 and HA-Ub-K48 plasmids. Western blotting was performed on cell lysates immunoprecipitated with an anti-Flag antibody, followed by the detection of polyubiquitination levels using an anti-Ub antibody. (D) UBR5 accelerated the Snail protein turnover through the HECT domain. HEK293T cells were transfected with corresponding plasmids. Cells were treated with cycloheximide (CHX) and harvested at indicated time points for immunoblotting with anti-Snail or anti-GFP antibody. The graph shows the quantification of Snail protein levels (based on the band intensity from the gels) normalized to those of GFP over the time course. Snail protein expression at the 0 h time point of treatment with CHX was set as 100 %. Experiments were performed in triplicate, and a representative experiment is presented.

    Article Snippet: The membranes were probed with primary antibodies, including Flag (Proteintech, Wuhan, China, 66008-4-Ig), Myc (Proteintech, 60003-2-Ig), UBR5 (Proteintech, 66937-1-Ig), Snail (Santa Cruz Biotechnology, Oregon, USA, 166476), phosphorylated Snail (Biodragon, BD-PP0568), Slug (Santa Cruz Biotechnology, 271977), E-cadherin (Proteintech, 20874-1-AP), N-cadherin (BD Transduction Laboratories, Franklin Lakes, USA, 610920), GSK3β (Proteintech, 82061-1-RR), pGSK3β (Proteintech, 67558-1-Ig), green fluorescent protein (GFP; Proteintech, 66002-1-Ig), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Bioss, Woburn, USA, 0978M).

    Techniques: Transfection, Plasmid Preparation, Expressing, Western Blot, Concentration Assay, Ubiquitin Proteomics, Immunoprecipitation

    UBR5 C2768S mutation abrogated the interaction with Snail. (A) His pull-down assays showed the abolished interactions between Snail and the UBR5 C2768S. A schematic representation of the UBR5 wild-type and C2768S mutation. (B) Co-immunoprecipitation assay showed that the interaction between the Snail and the UBR5 C2768S mutation was eliminated. HEK293T cells were transfected with UBR5-Myc, UBR5 C2768S-Myc, and Snail-Flag as indicated. Cell lysates were immunoprecipitated with either anti-Myc or anti-Flag antibodies and immunoblotted with anti-Snail and anti-UBR5 antibodies. (C) UBR5 C2768S abolished the UBR5-mediated degradation of Snail. HEK293T cells were transfected with Snail-Flag, UBR5-Myc, and UBR5 C2768S-Myc as indicated. Cell lysates were subjected to western blotting analysis with anti-Snail and anti-GFP antibodies. (D) UBR5 C2768S did not accelerate Snail protein turnover. HEK293T cells were transfected with Snail-Flag, UBR5-Myc, and UBR5 C2768S-Myc and treated with cycloheximide (CHX) as indicated. Cell lysates were subjected to western blotting analysis with anti-Snail and anti-GFP antibodi.

    Journal: Genes & Diseases

    Article Title: UBR5 regulates the progression of colorectal cancer cells through Snail-induced epithelial–mesenchymal transition

    doi: 10.1016/j.gendis.2025.101679

    Figure Lengend Snippet: UBR5 C2768S mutation abrogated the interaction with Snail. (A) His pull-down assays showed the abolished interactions between Snail and the UBR5 C2768S. A schematic representation of the UBR5 wild-type and C2768S mutation. (B) Co-immunoprecipitation assay showed that the interaction between the Snail and the UBR5 C2768S mutation was eliminated. HEK293T cells were transfected with UBR5-Myc, UBR5 C2768S-Myc, and Snail-Flag as indicated. Cell lysates were immunoprecipitated with either anti-Myc or anti-Flag antibodies and immunoblotted with anti-Snail and anti-UBR5 antibodies. (C) UBR5 C2768S abolished the UBR5-mediated degradation of Snail. HEK293T cells were transfected with Snail-Flag, UBR5-Myc, and UBR5 C2768S-Myc as indicated. Cell lysates were subjected to western blotting analysis with anti-Snail and anti-GFP antibodies. (D) UBR5 C2768S did not accelerate Snail protein turnover. HEK293T cells were transfected with Snail-Flag, UBR5-Myc, and UBR5 C2768S-Myc and treated with cycloheximide (CHX) as indicated. Cell lysates were subjected to western blotting analysis with anti-Snail and anti-GFP antibodi.

    Article Snippet: The membranes were probed with primary antibodies, including Flag (Proteintech, Wuhan, China, 66008-4-Ig), Myc (Proteintech, 60003-2-Ig), UBR5 (Proteintech, 66937-1-Ig), Snail (Santa Cruz Biotechnology, Oregon, USA, 166476), phosphorylated Snail (Biodragon, BD-PP0568), Slug (Santa Cruz Biotechnology, 271977), E-cadherin (Proteintech, 20874-1-AP), N-cadherin (BD Transduction Laboratories, Franklin Lakes, USA, 610920), GSK3β (Proteintech, 82061-1-RR), pGSK3β (Proteintech, 67558-1-Ig), green fluorescent protein (GFP; Proteintech, 66002-1-Ig), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Bioss, Woburn, USA, 0978M).

    Techniques: Mutagenesis, Co-Immunoprecipitation Assay, Transfection, Immunoprecipitation, Western Blot